
Building a Tower

Yurim Lee
Inquiry Based Linear Algebra Honors II, The University of California, Santa Barbara

Can we determine the optimal shape of a tower in terms of wind resistance? In this paper, we will
derive the equations defining the optimal shape in two dimensional space, and three dimensional
space, based on the Eiffel Tower property, stated by Gustave Eiffel.

INTRODUCTION

Consider a tower defined by two symmetric curves as
shown in FIG. 1. The Eiffel Tower property states that
the tower is stable if the tangent line at any height h to
both sides of the tower intersects at the center of mass
of the portion of the tower above h. Using this property,
we will be deriving equations determining the equations
of the curves.

FIG. 1: Curves defining the shape of the tower and two tan-
gent lines taken at h = 1

DETERMINING THE SHAPE IN 2D

Suppose some f(x) and −f(x) define the shape of our
tower. Assuming the mass is distributed evenly with
area, we can easily calculate the location of the center
of mass (0, ȳ).

(0, ȳ) =
moment

area
=

2
∫ b
h
yf(y)dy

2
∫ b
h
f(y)dy

(1)

As one of the restrictions on the graph has to do with
the tangent line at a certain height, h, the slope at this
height is also a factor that restricts f(x), and we can use
(0, ȳ) and (f(h), h) to construct this slope.

f ′(h) =
−f(h)

ȳ − h
(2)

This equation can be rewritten as

f ′(h)(ȳ − h) = −f(h) (3)

and now plugging in Equation (1), we have

f ′(h)(
2
∫ b
h
yf(y)dy

2
∫ b
h
f(y)dy

− h) = −f(h) (4)

In order to make this differential equation more conve-
nient to solve, we can write f(y) in terms of A(h), the
area of the tower above height h.

A(h) = 2

∫ b

h

f(y)dy (5)

By the Fundamental Theorem of Calculus,

A′(h) = 2
d

dh
(

∫ b

h

f(y)dy) (6)

A′(h) = −2f(h) (7)

f(h) = −1

2
A′(h) (8)

f ′(h) = −1

2
A′′(h) (9)

Now plugging Equation (8), (9), and (5) into Equation
(4), we get

A′′(h)(
2
∫ b
h
yf(y)dy

A(h)
− h) = A′(h) (10)

By simple algebra, we can isolate this integral to one side,
and obtain

2

∫ b

h

yf(y)dy = (− A′(h)

A′′(h)
+ h)A(h) (11)

Taking derivative once again,

−2hf(h) = A′h+A− A′′(A′′A+A′A′) −A′AA′′′

(A′′)2
(12)

which simplifies to

A′′A′ −AA′′′ = 0 (13)
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We can rewrite this as

A′′′

A′′
=
A′

A
(14)

and integrate. ∫
A′′′

A′′
dh =

∫
A′

A
dh (15)

ln(A′′) = ln(A) + C1 (16)

A′′ − C2A = 0 (17)

where C1 and C2 are some constants.
A = Cert,A = Csin(bt), and A = Ccos(bt) where c,r,
and b are mathematically acceptable solutions, and now
that we have A, we can solve for f(y).

f(y) = −1

2
crery (18)

Note while A = Cert,A = Csin(bt), and A = Ccos(bt)
where c,r, and b are all mathematically acceptable, only
the most realistic, and feasible, physical solution f(y) =
− 1

2cre
ry when A = Cert is shown here.

DETERMINING THE SHAPE IN 3D

As towers in real life are not two dimensional, we will
now look at three dimensional towers by revolving y =
f(x) by y axis. Similarly, the coordinate of center of mass
will be (0, ȳ, 0). As we can look at the tower as a pile of
discs with radius f(y) and height dy, moment is

moment =

∫ ∫ ∫
V

ydV =

∫ b

h

yπf2(y)dy (19)

giving

ȳ =
π
∫ b
h
yf2(y)dy

V (h)
(20)

As

V (h) =

∫ b

h

πf2(y)dy (21)

once again, by Fundamental Theorem of Calculus, we get

V ′(h) = −πf2(h) (22)

and we can rewrite this

f(h) = −
√
V ′(h)

π
(23)

as f(h) > 0. Taking derivative, we obtain

f ′(h) =
−V ′′(h)

π

2
√
−V ′(h)

π

=
−V ′′(h)

2π−V
′(h)
π

(24)

The slope at h is f ′(h) = −f(h)
y−h . Note that this is the

same as the case of plane because for any point in the
circle, which was created by revolving the point (f(h), h)
around the y axis, its tangent meets (0, ȳ). (f(h), h) is a

special case. As f ′(h) = −f(h)
y−h ,

f ′(h)(ȳ − h) = −f(h) (25)

Now plugging Equation (20), (23), and (24) into Equa-
tion (25), we get

−V ′′(h)

2π−V
′(h)
π

(
π
∫ b
h
yf2(y)dy

V (h)
− h) = −

√
−V ′(h)

π
(26)

(π

∫ b

h

yf2(y)dy − hV )V ′′ = −2π
V ′

−π
V (27)

(π

∫ b

h

yf2(y)dy − hV )V ′′ = −2V ′V (28)

π

∫ b

h

yf2(y)dy = hV − 2V ′V

V ′′
(29)

Taking derivative, we have

−πhf2(h) = V + hV ′ − 2(V ′′V + V ′2V ′′ − V ′V V ′′′)

V ′′2
(30)

Note the left hand side of Equation (30) is hV ′, so can-
celling out hV ′ on both sides, we get,

V V ′′2 − 2(V ′′2V + V ′2V ′′ − V ′V V ′′′) = 0 (31)

2V ′V V ′′′ = V V ′′2 + 2V ′2V ′′ (32)

2
V

V ′
V ′′′

V ′′
=

V

V ′
V ′′

V ′
+ 2 (33)

2
V ′′′

V ′′
=
V ′′

V ′
+ 2

V ′

V
(34)

∫
2
V ′′′

V ′′
dh =

∫
V ′′

V ′
dh+

∫
2
V ′

V
dh (35)

2ln(V ′′) = ln(V ′) + 2ln(V ) + C (36)



3

V ′′2 = V ′V 2eC (37)

Let eC = k then we have

V ′′2 = kV ′V 2 (38)

where k > 0 which is a nonlinear differential equation.

We cannot solve this nonlinear differential equation as
we have previously solved linear differential equations but
we can use Euler’s method to approximate.

We can also guess for constant k as whenever wind hits
the building hard enough, the building slightly tilts, and
there will be a restoring torque. In real life, this would
take many factors, i.e.force of wind at different heights,
and radius of the base of the tower, into account but we
will not discuss the physical aspects of this model in this
paper.
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